Exploiting Out-of-Domain Data Sources for Dialectal Arabic Statistical Machine Translation

نویسندگان

  • Katrin Kirchhoff
  • Bing Zhao
  • Wen Wang
چکیده

Statistical machine translation for dialectal Arabic is characterized by a lack of data since data acquisition involves the transcription and translation of spoken language. In this study we develop techniques for extracting parallel data for one particular dialect of Arabic (Iraqi Arabic) from out-ofdomain corpora in different dialects of Arabic or in Modern Standard Arabic. We compare two different data selection strategies (cross-entropy based and submodular selection) and demonstrate that a very small but highly targeted amount of found data can improve the performance of a baseline machine translation system. We furthermore report on preliminary experiments on using automatically translated speech data as additional training data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translating Dialectal Arabic to English

We present a dialectal Egyptian Arabic to English statistical machine translation system that leverages dialectal to Modern Standard Arabic (MSA) adaptation. In contrast to previous work, we first narrow down the gap between Egyptian and MSA by applying an automatic characterlevel transformational model that changes Egyptian to EG′, which looks similar to MSA. The transformations include morpho...

متن کامل

Multi-Lingual Phrase-Based Statistical Machine Translation for Arabic-English

In this paper, we implement a multilingual Statistical Machine Translation (SMT) system for Arabic-English Translation. Arabic Text can be categorized into standard and dialectal Arabic. These two forms of Arabic differ significantly. Different mono-lingual and multi-lingual hybrid SMT approaches are compared. Mono-lingual systems do always result in better translation accuracy in one Arabic fo...

متن کامل

Dialectal to Standard Arabic Paraphrasing to Improve Arabic-English Statistical Machine Translation

This paper is about improving the quality of Arabic-English statistical machine translation (SMT) on dialectal Arabic text using morphological knowledge. We present a light-weight rule-based approach to producing Modern Standard Arabic (MSA) paraphrases of dialectal Arabic out-of-vocabulary (OOV) words and low frequency words. Our approach extends an existing MSA analyzer with a small number of...

متن کامل

Handling OOV Words in Dialectal Arabic to English Machine Translation

Dialects and standard forms of a language typically share a set of cognates that could bear the same meaning in both varieties or only be shared homographs but serve as faux amis. Moreover, there are words that are used exclusively in the dialect or the standard variety. Both phenomena, faux amis and exclusive vocabulary, are considered out of vocabulary (OOV) phenomena. In this paper, we prese...

متن کامل

Domain and Dialect Adaptation for Machine Translation into Egyptian Arabic

In this paper, we present a statistical machine translation system for English to Dialectal Arabic (DA), using Modern Standard Arabic (MSA) as a pivot. We create a core system to translate from English to MSA using a large bilingual parallel corpus. Then, we design two separate pathways for translation from MSA into DA: a two-step domain and dialect adaptation system and a one-step simultaneous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.01938  شماره 

صفحات  -

تاریخ انتشار 2015